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Abstract. This paper presents a unified medical image retrieval method
that integrates visual features and text keywords using multimodal clas-
sification and filtering. For content-based image search, concepts derived
from visual features are modeled using support vector machine (SVM)-
based classification of local patches from local image regions. Text key-
words from associated metadata provides the context and are indexed
using the vector space model of information retrieval. The concept and
context vectors are combined and trained for SVM classification at a
global level for image modality (e.g., CT, MR, x-ray, etc.) detection. In
this method, the probabilistic outputs from the modality categorization
are used to filter images so that the search can be performed only on
a candidate subset. An evaluation of the method on ImageCLEFmed’10
dataset of 77,000 images, XML annotations and topics results in a mean
average precision (MAP) score of 0.1125. It demonstrates the effective-
ness and efficiency of the proposed multimodal framework compared to
using only a single modality or without using any classification informa-
tion.

1 Introduction

The search for relevant and actionable information is key to achieving clinical and
research goals in biomedicine. Biomedical information exists in different forms:
as text, illustrations, and images in journal articles, documents, and other collec-
tions, and as patient cases in electronic health records. For example, in scientific
publications, images are used to elucidate the text and can be easily understood
in context. For example, Fig. 1 along with its caption are fairly informative in
the context of the paper [1] “Eosinophilic cellulitis-like reaction to subcutaneous
etanercept injection”. Taken out of context, the caption provides little infor-
mation about the image, and the image does not provide enough information
about the nature of the skin reaction. This example illustrates both the prob-
lem of finding text that provides sufficient information about the image without
introducing irrelevant information, and the potential benefits of combining in-
formation provided by the text and image.

While there is a substantial amount of completed and ongoing research in
both the text and content based image retrieval (CBIR) in medical domain, much



Fig. 1. Example image along with its caption in an article

remains to be done to see how effectively these two approaches can complement
each other in an integrated framework. Biomedical image retrieval based on mul-
timodal sources has been only recently gaining popularity due the large amount
information sources [2, 3]. The results of the past medical retrieval tracks of Im-
ageCLEF 1 suggest that the combination of visual and text based image searches
provides better results than using the two different approaches individually.

Previous studies also have shown that imaging modality is an important
aspect of medical retrieval [4]. In user-studies, clinicians have indicated that
modality is one of the most important search filters that they would like to use.
In fact, quality and speed of image retrieval from large biomedical collections
can be improved by reducing the search space by filtering out irrelevant images
and learning about the image categories. For example, to search “posteroante-
rior (PA) chest x-rays with enlarged heart”, automatically classified images in
the collection could be organized according to modality (e.g., x-ray), body part
(e.g., chest), and orientation (e.g., PA) criteria. Next, similarity matching can be
performed between query and target images in the corresponding filtered subset
to find “enlarged heart” as a distinct visual or textual concept. Some medical
image search engines, such as Goldminer 2 and Yottalook 3 allow users to limit

1 http://imageclef.org
2 http://goldminer.arrs.org/home.php
3 http://www.yottalook.com



Fig. 2. Process flow diagram of the multimodal retrieval framework

the search results to a particular modality. However, this modality is typically
extracted from the caption and is often not correct or present.

Studies have also shown that the modality can be extracted from the image
itself using visual features. For example, in [5], the automatic categorization of
6231 radiological images into 81 categories is examined by utilizing a combination
of low-level global texture features with low-resolution scaled images and a K-
nearest-neighbors (KNN) classifier. In [6], the performances of two medical image
categorization architectures with and without a learning scheme are evaluated on
10,322 images of 33 categories based on modality, body part, and orientation with
a high accuracy rate of more than 95%. Although these approaches demonstrated
promising results for medical image classification at a global level, they do not
relate classification to retrieval in a direct manner, instead only stressed its value
for image annotation and pre-filtering purposes.

To minimize limitations of low-level feature representations that result in the
semantic gap and motivated by the successful use of machine learning in informa-
tion retrieval (IR), we present a multimodal classification-based medical image
retrieval method. We perform the multimodal search based on image classifica-
tion and filtering using both textual and visual features. Text feature provide
the context while the concept is derived from the visual features. In this frame-
work, the modality specific information that is available as probabilistic outputs
of SVM learning on the query and database images is used select the relevany
image subset. It is a primary goal of this work to develop improved informa-



tion retrieval techniques by moving beyond conventional text-based searching to
combining both text and visual features extracted from collections of full-text
biomedical journal articles, images and illustrations within these, and a collection
of patient cases.

Fig. 2 shows the process flow diagram of the proposed multimodal retrieval
approach. As can be seen from the top portion of Fig. 2, a search can be initiated
simultaneously based on both text (left) and image parts (right) of a multimodal
query and later the individual similarity scores are weighted combined (middle)
for a final ranked result list. In addition, the text and image features are com-
bined (bottom) to determine the query image modality from a SVM classification
sub-system and based on that information only filtered images are accessed from
the document and image indexes for further similarity matching.

The proposed approach and an evaluation of its efficacy are presented as
follows: in Section 2, we briefly describe the image representation approach in
concept and context feature spaces. Section 3 describes the multimodal search
approach and Section 4 presents the modality detection and filtering approach
based on the SVM classification. The experiments and the analysis of the results
are presented in Section 5.

2 Image Feature Representation

The performance of a classification and/or retrieval system depends on the un-
derlying image representation, usually in the form of a feature vector. The fol-
lowing feature vectors are generated at different levels of abstraction.

2.1 Context-Based Image Representation

Fig. 3. Sample Chest x-ray image with annotation



For purposes of this research we use the ImageCLEFmed’10 dataset [4] that
is provided to the participants of the evaluation. The collection comprises jour-
nal articles from two journals published by the Radiological Society of North
America (RSNA), viz., Radiographics and Radiology. The collection includes full
text from the articles and all images and figures within these. In all there are
nearly 77,500 images from over 5,600 articles. The contents of this collection
represent a broad and significant body of medical knowledge, which make the
retrieval more challenging. The collection contains a variety of imaging modali-
ties, image sizes, and resolutions and can be considered as a fairly a realistic set
for evaluating medical image retrieval techniques.

Each image in the data set is represented as a structured document of image-
related text, which is termed as context here. Now each image in the collection
is attached to a manually annotated case or lab report in a XML file. It is nec-
essary to index these annotation files into an easily accessible representation.
There are a variety of indexing techniques which mostly rely on keywords or
terms to represent the information content of documents [7]. In our case, infor-
mation from only relevant tags are extracted and preprocessed by removing stop
words that are considered to be of no importance for the actual retrieval pro-
cess. Subsequently, the remaining words are reduced to their stems, which finally
form the index terms or keywords of the annotation files. Next, the annotation
files (document) are modeled as a vector of words based on the popular vector
space model (VSM) of IR [7]. Our representation includes the title, and MeSH
terms of the article in which the image appears as well as caption of the images.
Fig. 3 shows an example chest x-ray image from the collection along with its
annotation which is generated from the article where the image appears.

Let T = {t1, t2, · · · , tN} denote the set of terms in the collection. Then
it can represent a document Dj as vector in a N -dimensional space as fD

j =
[wj1, wj2, · · · , wjN ]T. The element wjk denotes the weight of term tk in doc-
ument Dj , depending on its information content. A weighting scheme has two
components: a global weight and a local weight. The global importance of a term
is indicating its overall importance in the entire collection, weighting all occur-
rences of the term with the same value. The popular tf-idf term-weighting scheme
is used in this work, where the local weight is denoted as Ljk = log(fjk) + 1,
fjk is the frequency of occurrence of keyword tk in document Dj . The global
weight Gk is denoted as inverse document frequency as Gk = log(M/Mk), for
i = (1, · · · , , N), where Mk be the number of documents in which tk is found
and M is the total number of documents in the collection. Finally, the element
wjk is expressed as the product of local and global weight as wjk = Ljk ∗ Gk.
This weighting scheme amplifies the influence of terms, which occur often in a
document (e.g., tf factor), but relative rarely in the whole collection of docu-
ments (e.g., idf factor) [7]. A query Dq is also represented as a vector of length
N as fD

q = [ŵq1, · · · , ŵqi, · · · , ŵqN ]T.



Fig. 4. Image encoding with probabilistic membership scores

2.2 Concepts-Based Image Representation

In a heterogeneous collection of medical images, it is possible to identify specific
local patches that are perceptually and/or semantically distinguishable, such
as homogeneous texture patterns in grey level radiological images, differential
color and texture structures in microscopic pathology and dermoscopic images,
etc. The variation in these local patches can be effectively modeled as visual
keywords by using supervised learning based classification techniques, such as
the support vector machine (SVM) [8]. In its basic formulation, the SVM is a
binary classification method that constructs a decision surface and maximizing
the inter-class boundary between the samples. A number of methods have been
proposed for multi-class classification by solving many two-class problems and
combining their predictions.

In this research, we utilize a multi-class classification method by combining
all pairwise comparisons of binary SVM classifiers, known as one-against-one
or pairwise coupling (PWC) [9]. PWC constructs binary SVM’s between all
possible pairs of classes. Hence, for L classes, this method uses L ∗ (L − 1)/2
binary classifiers that individually compute a partial decision for classifying a
data point (image). During the testing of a feature x, each of the L ∗ (L− 1)/2
classifier votes for one class. The winning class is the one with the largest number
of accumulated votes.

In order to perform the learning, a set of L labels are assigned as C =
{c1, · · · , ci, · · · , cL}, where each ci ∈ C characterizes a visual concept. The
training set of the local patches that are generated by a fixed-partition based



approach and represented by a combination of color and texture moment and
edge histogram related features [10]. For SVM training, the initial input to
the system is the feature vector set of the patches along with their manually
assigned corresponding concept labels. Images in the data set are annotated
with visual concept labels by fixed partitioning each image Ij into l regions as
{x1j

, · · · ,xkj
, · · · ,xlj}, where each xkj

∈ <d is a combined color and texture
feature vector. For each xkj , the visual concept probabilities are determined by
the prediction of the multi-class SVMs as [9]

pikj
= P (y = i | xkj

), 1 ≤ i ≤ L. (1)

For example, Fig. 4 shows a particular region in a segmented image and its
probabilistic membership scores to different local concept categories. Finally, the
category label of xkj

is determined as cm, which is the label of the category with
the maximum probability score. Hence, the entire image is thus represented as a
two-dimensional index linked to the visual concept labels. Based on this encoding
scheme, an image Ij is represented as a vector of visual concepts as

f I
j = [wj1, · · · , wji, · · ·wjL]T (2)

where each wji corresponds to the normalized frequency of a concept ci, 1 ≤ i ≤
L in image Ij . Here, the vector dimension equals to the number of local concept
categories.

3 Multimodal Image Search

Let us consider q as a multi-modal query, which has an image part as Iq and a
text part as Dq. The similarity between q and a multi-modal item j, which also
has also two parts (e.g., image (concept) Ij and text (context) Dj), is defined as

Sim(q, j) = ωISimconcept(Iq, Ij) + ωDSimcontext(Dq, Dj) (3)

Here, ωI and ωD are normalized inter-modality weights within the concept and
context feature spaces, which subject to 0 ≤ ωI , ωD ≤ 1 and ωI + ωD = 1.
The effectiveness of the linear combination depends mainly on the choice of the
modality weights, which can be found out experimentally.

In our multimodal framework, the individual image Simconcept(Iq, Ij) and
text Simcontext(Dq, Dj) based similarities are computed based on the Cosine
distance measure [7]. In particular, similar documents (images) are expected
to have small angles between their corresponding vectors. In many cases, the
direction or angle of the vectors are a more reliable indication of the semantic
similarities of the objects than the distance between the objects in the term-
document space. Hence, to compare a query and document vector, the cosine
similarity measure is applied as follows [7]

Simcontext(Dq, Dj) = cos(fD
q , fD

j ) =
∑N

i=1 wqi ∗ wji√∑N
i=1(wqi)2 ∗

√∑N
i=1(wji)2

(4)



where wqi and wji are the weights of the term ti in Dq and Dj respectively. In
a similar way, cosine similarity measure is applied to the concept feature vector.

Due to the large number of images and vector size, it might take considerable
amount of times to retrieve images from a collection. In the following section, we
present a filtering approach based on multi-class classification on the multimodal
input feature vector described earlier.

4 Modality Detection and Filtering

The variation of the medical image categories (e.g., modalities) at a global level
can also be effectively modeled by the multi-class SVM as described in the pre-
vious section. For the SVM training, the input is a feature vector set of train-
ing images in which each image is manually annotated with a single modal-
ity label selected out of the M modalities. So, a set of M labels are defined
as {ω1, · · · , ωi, · · · , ωM}, where each ωi characterizes the representative image
modality. In this context, given a multimodal feature vector x, which is a sim-
ple concatenation of the context and concept feature vectors, the multi-class
estimates the probability or confidence scores of each category as

pm = P (y = ωm | x), for 1 ≤ m ≤ M (5)

The final category of a feature is determined based on the maximum probability
score.

Algorithm 1 Multimodal Image Filtering
(Off-line): Select a set training images (docs) of M categories with associated cat-
egory label for SVM learning. Perform SVM learning based on the input of the
combined multimodal feature vector [fD · f I ] for each training images (docs).
(Off-line): Predict the category of each database image by applying SVM and store
the category vectors (Equation 6) of N database images as a category index along
with the feature indexes.
(On-line): For a multimodal query image of parts Iq and Dq, determine the category
vector as pq = [pq1 , pq2 , · · · , pqM ]T.
for j = 1 to N do

Consider the top ranked (n < M) category labels for Iq and Ij after sorting the
elements in the category vectors.
Construct the category label sets as Sq and Sj for the top ranked categories of Iq

and Ij respectively. Here, |Sq| = n and |Sj | = n.
if (Sq ∩ Sj 6= ∅) then

Consider I(D)j for further similarity matching (Equation 3)
end if

end for

We finally utilize the information about category prediction of query and
database images for image filtering to reduce the search space. The output of



the above classification approach form a M -dimensional category vector of an
image I(D) as follows

pj = [pj1 , · · · , pjm , · · · , pjM
]T (6)

Here, pjm
, 1 ≤ m ≤ M , denotes the probability or class confidence score that

an image I(D)j belongs to the category ωm in terms of the multimodal feature
vector.

During the off-line indexing process, this output is stored as the category
vector of the database images in a category index along with the feature indices.
Similar feature extraction and category prediction stages are performed on-line
when the system is searched using an unknown query image. The category vector
of a query image I(D)q and the vectors of the database images from the cate-
gory index are evaluated to identify candidate target images in the collection,
thereby filtering out irrelevant images from further consideration. To minimize
misclassification errors, instead of only considering the image categories based
on the highest obtained probability values, n < M nearest classes of the target
images to the query image are considered.

The process validates for class overlap between the query and target images.
Generally, the value of n << M to prevent inclusion of distant classes and
provide effective filtering. A target image is only selected for further matching
if at least one common category is found out between the top n categories of
the query image and itself. This further reduces the risk of searching wrong
images due to misclassification. Steps of the filtering algorithm are presented in
Algorithm 1.

5 Experiments & Results

To evaluate the retrieval effectiveness, experiments are performed on the Im-
ageCLEFmed’10 benchmark medical image collection. The experimental results
are generated based on the 16 ad hoc query topics (e.g., a short sentence or
phrase describing the search request in a few words with one to three relevant
images) that were initially generated based on a log file of Pubmed 4. All topics
were categorized with respect to the retrieval approaches expected to perform
best, i.e., visual topics for CBIR, semantic topics for text retrieval and mixed
topics for multi-modal retrieval. Each topic consisted of the query itself in three
languages (English, German, French) and 2 to 3 example images for the visual
part of the topic.

5.1 Training for SVM

A training set of about 2400 images provided by the ImageCLEFmed’10 is used
for SVM training for modality detection. The images are classified into one of
the 8 modalities (e.g., CT, MR, XR, etc,) as shown in Table 1.
4 http://www.pubmed.gov



Table 1. Image categories and number of training images

Modality No. of Images

CT: Computerized tomography 314
GX: Graphics, typically drawing and graphs 355

MR: Magnetic resonance imaging 299
NM: Nuclear Medicine 204

PET: Positron emission tomography including PET/CT 285
PX: optical imaging including photographs, micrographs, gross pathology etc 330

US: ultrasound including (color) Doppler 307
XR: x-ray including x-ray angiography 296

Table 2. 10-Fold Cross Validation (CV) Accuracy

Feature C γ Accuracy

Concept 100 0.0002 73.89%
Context (Caption) 20 0.0002 90.50%
Context (Caption+Title+MeSH) 20 0.0002 90.54%
Combined (Context + Concept) 200 0.00001 95.39%

For the SVM training, we utilized the radial basis function (RBF) as kernel. A
10-fold cross-validation (CV) is conducted to find the best values of the tunable
parameters C and γ of the RBF kernel as shown in Table 2.

For the visual concept generation based on the SVM learning, 30 local concept
categories are manually defined, such as tissues of lung or brain of CT or MRI,
bone of chest, hand, or knee x-ray, microscopic blood or muscle cells, dark or
white background, etc. The training set consists of less then 1% images of the
entire collection. Each image in the training set is partitioned into an 8× 8 grid
generating 64 non-overlapping regions, which is proved to be effective to generate
the local patches. Only the regions that conform to at least 80% of a particular
concept category are selected and labeled with the corresponding category label
due to the consideration of robustness to noise [10]. After finding the best values
of the parameters C = 200 and γ = 0.02 of the RBF kernel with a 10-fold CV
accuracy of 81.01%, they are utilized for the final training to generate the SVM
model file. We utilized the LIBSVM software package [11] for implementing the
multi-class SVM classifiers.



5.2 Performance Analysis

Results for different retrieval methods are computed using the latest version of
TREC-EVAL 5 software based on the relevant sets of all topics, which were crated
by the CLEF organizers by considering top retrieval results of all submitted
runs of the participating groups. Results were evaluated using un interpolated
(arithmetic) Mean Average Precisions (MAP) to test effectiveness, Geometric
Mean Average Precision (GMAP) to test robustness, and Precision at rank 20
(P20).

Table 3. Retrieval Results based on the Query Topics (CLEF’10)

Feature MAP GMAP Rprec Bpref P(20)

Concept 0.0010 0.0001 0.0049 0.0144 0.0063

Context 0.1058 0.0133 0.1261 0.1441 0.1906

Multimodal 0.0958 0.0133 0.1150 0.1605 0.1781

Multimodal (Filter) 0.1125 0.0159 0.1292 0.2176 0.1875

It is clear from Table 3 that the best MAP score (0.1125) is achieved when a
multimodal search is performed in a filtered image set. Although, we achieved a
lower MAP score compared to the text only search approach when no filtering is
applied based on multimodal search. This result might be an indication that the
query topics are more semantic in nature and mixing with image features only
lower the precision when search is performed on the entire collection. The other
scores (e.g., GMAP, Rprec, and Bpref) also slightly improved when we compare
filtering and without filtering approaches as shown in Table 3. Finally, from the
results, we can conjecture that the pre-filtering approach is indeed an effective
one as the performances are always better when compared to the searched which
were performed on the entire collection.

Further, an important benefit of searching on a filtered image set is gain in
computation time. We tested the efficiency of the multimodal search scheme by
comparing the average retrieval time for 16 query topics with and without ap-
plying the filtering scheme. The experiment was performed in an Intel Pentium
Dual-Core CPU at 3.40 GHz with 3.5 GB of RAM running Microsoft Windows
XP SP2 Professional operating system. The linear search time without filter-
ing was twice as much as search on the filtered image set, suggesting that the
proposed method is both effective and efficient.

5 http://trec.nist.gov/trec− eval/



6 Conclusions

In this paper, a novel framework for multi-modal interaction and integration is
proposed for a diverse medical image collection with associated annotation of
the case or lab reports. Unlike in many other approaches, where the search is
performed with a single modality and without any classification information,
we proposed to use the classification result directly in the retrieval loop and
integrate the results obtained from both the text and imaging modalities. A
standard image dataset has provided enough reliability for objective performance
evaluation that demonstrates the efficacy of the proposed method.
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